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Systemic inflammation is a leading cause of hospital death. Mild systemic inflammation is accompanied by warmth-seeking
behavior (and fever), whereas severe inflammation is associated with cold-seeking behavior (and hypothermia). Both
behaviors are adaptive. Which brain structures mediate which behavior is unknown. The involvement of hypothalamic
structures, namely, the preoptic area (POA), paraventricular nucleus (PVH), or dorsomedial nucleus (DMH), in thermoregulatory
behaviors associated with endotoxin (lipopolysaccharide [LPS])-induced systemic inflammation was studied in rats. The rats
were allowed to select their thermal environment by freely moving in a thermogradient apparatus. A low intravenous dose of
Escherichia coli LPS (10 mg/kg) caused warmth-seeking behavior, whereas a high, shock-inducing dose (5,000 mg/kg) caused
cold-seeking behavior. Bilateral electrocoagulation of the PVH or DMH, but not of the POA, prevented this cold-seeking
response. Lesioning the DMH with ibotenic acid, an excitotoxin that destroys neuronal bodies but spares fibers of passage, also
prevented LPS-induced cold-seeking behavior; lesioning the PVH with ibotenate did not affect it. Lesion of no structure
affected cold-seeking behavior induced by heat exposure or by pharmacological stimulation of the transient receptor potential
(TRP) vanilloid-1 channel (‘‘warmth receptor’’). Nor did any lesion affect warmth-seeking behavior induced by a low dose of
LPS, cold exposure, or pharmacological stimulation of the TRP melastatin-8 (‘‘cold receptor’’). We conclude that LPS-induced
cold-seeking response is mediated by neuronal bodies located in the DMH and neural fibers passing through the PVH. These
are the first two landmarks on the map of the circuitry of cold-seeking behavior associated with endotoxin shock.
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INTRODUCTION
Deep body temperature (Tb) is regulated by both autonomic and

behavioral means. Autonomic thermoregulation is limited in its

ability to compensate for thermal loads and exacts a high price.

Indeed, the most effective mechanisms of heat loss involve

evaporation of water from the surface of the skin or respiratory

pathways (e.g., by sweating, salivation, or polypnea), which strains

the body’s precious water resources, whereas heat production

(nonshivering or shivering thermogenesis) depletes the body’s

energy stores. In contrast to autonomic thermoregulation,

behavior places no demands on the body’s water or energy

resources; furthermore, behavioral thermoregulation can compen-

sate for much greater thermal loads. By behavioral means, humans

can survive at ambient temperatures (Tas) ranging from 2110uC
(the surface of the moon) to 2,000uC (the air around a space shuttle

as it reenters the atmosphere) while maintaining Tb within a few

tenths of a degree Celsius [1]. Behavioral thermoregulatory

responses vary from primitive (e.g., locomotion to a preferred Ta

in a Ta gradient) to complex (e.g., maintaining Ta inside a space

shuttle). Evidence (mostly from stimulation experiments) suggests

that different thermoregulatory behaviors in the rat (e.g., relaxed

postural extension, thermoregulatory grooming, and locomotion)

use distinct neural circuitries [2]. However, the neuroanatomic

substrate of no thermoregulatory behavior has been studied

extensively, and almost nothing is known about the neuroanatomy

of behavioral thermoregulation [3].

The present study was undertaken to evaluate whether

hypothalamic structures are involved in selection of preferred Ta

under various conditions in rats. We were especially interested in

the thermoregulatory behavior associated with systemic inflam-

mation. In the laboratory, systemic inflammation is often studied

by administering bacterial lipopolysaccharide (LPS, endotoxin) to

rats. Studies using this model have suggested that low doses of LPS

(mild inflammation) cause fever and warmth-seeking behavior

[4,5], whereas high doses (severe inflammation) cause hypother-

mia and cold-seeking behavior [5,6]. Warmth-seeking behavior in

mild systemic inflammation is likely to contribute to the de-

velopment of fever, an increase in Tb that exerts antimicrobial and

immunostimulating actions [7]. Cold-seeking behavior and

hypothermia occurring in severe systemic inflammation are also

beneficial [8]. They are aimed at energy conservation and are

associated with analgesia, sleep, and locomotor depression, i.e., the

energy-saving symptoms proposed or demonstrated to be

beneficial during infection and severe inflammation [9–11]. With

the exception of one study in toads [12], the neuronal circuitry of

LPS-induced warmth-seeking behavior has not been investigated,
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and nothing is known about brain mediation of LPS-induced cold-

seeking behavior.

RESULTS AND DISCUSSION

Hypothalamic structures studied
Three structures were selected for this study: the preoptic area

(POA), paraventricular hypothalamic nucleus (PVH), and dor-

somedial hypothalamic nucleus (DMH). The POA, previously

known as the ‘‘thermoregulatory center,’’ contains warm-sensitive

neurons that control all autonomic thermoeffectors [3] and that

are thought to be the first neurons in the efferent fever pathway

[13–16]. Animals with POA lesions cannot defend their Tb

autonomically against either cold or heat [17–21]. In the present

study, we placed large bilateral electrolytic lesions in the POA of

rats (Fig. 1A). Confirming findings by others [17–25], the POA-

lesioned rats had a somewhat elevated Tb and were incapable of

defending their Tb autonomically against either moderate heat

exposure (P = 0.003) or mild cold exposure (P,0.001) (Fig. 1B). In

fact, heat-induced hyperthermia in POA-lesioned animals was so

severe that the time of heat exposure in these experiments had to

be reduced to 1 h (instead of the 2 h planned) to avoid heat stroke.

The second structure studied, the PVH, is unique from

a thermoregulatory perspective: it has been implicated in

selectively mediating thermoregulatory responses to inflammatory

stimuli. Indeed, electrolytic and chemical lesions of the PVH

neither alter the circadian rhythm of Tb [26] nor affect Tb

responses to cold or heat [27,28]. However, they do attenuate LPS

fever, at least when the animals cannot use behavioral means to

regulate their Tb and must rely on autonomic means to mount the

febrile response [26–28]. We placed large bilateral electrolytic

lesions in the PVH of rats (Fig. 2A). As expected, such lesions did

not affect their ability to defend Tb autonomically against either

heat or cold (Fig. 2B).

The third structure studied, the DMH, is involved in the control

of the most important heat production thermoeffector in the rat:

brown adipose tissue [3,29,30]. Blocking the activation of DMH

neurons pharmacologically interrupts the stimulation of brown fat

thermogenesis [31,32]. A recent study of Fos protein expression in

the brain [33] suggested that the DMH is also involved in the

control of operant heat-avoidance behavior (moving to a reward

area to trigger a breeze of cold air). When we placed large bilateral

electrolytic lesions in the DMH (Fig. 3A), the lesions did not affect

the autonomic defense of Tb against heat. However, they strongly

compromised autonomic cold-defense: the same cold exposure

that failed to alter Tb of the sham-lesioned rats caused marked

hypothermia (P,0.001) in DMH-lesioned rats (Fig. 3B).

Figure 1. Electrolytic ablation of the POA: histological verification and effects on autonomic thermoregulation. (A) Bright-field photomicrographs of
serial coronal brain sections (50 mm, cresyl violet staining) are shown for a sham-lesioned rat and a POA-lesioned rat. Here and in Figures 2, 3, 7 and 8,
the number in the right upper corner of the schematic of each section of the sham-lesioned brain indicates the distance (in mm) between the
section’s plane and bregma. ac, anterior commissure; f, fornix; LPO, lateral preoptic area; MnPO, median preoptic nucleus; MPA, medial preoptic area;
ox, optic chiasm; Sch, suprachiasmatic nucleus; SO, supraoptic nucleus; 3V, third ventricle. (B) The ability of sham-lesioned and POA-lesioned rats to
defend their Tb (abdominal) during moderate heat exposure (28uC, 1 h) or mild cold exposure (17uC, 2 h). The rats could not move to a different Ta;
therefore, they were forced to regulate their Tb mostly by autonomic mechanisms.
doi:10.1371/journal.pone.0000001.g001

Neural Basis of Cold Seeking

PLoS ONE | www.plosone.org 2 December 2006 | Issue 1 | e1



Electrolytic lesions: effects on thermoregulatory

behavior
After we verified that lesions of different hypothalamic structures

produced the expected effects on the autonomic regulation of Tb,

we studied the effects of these lesions on thermoregulatory

behavior in a thermogradient apparatus. Systemic inflammation

was induced by intravenous (i.v.) injection of bacterial LPS either

at a low, fever-inducing dose (10 mg/kg) or at a high, shock- and

hypothermia-inducing dose (5,000 mg/kg). These two doses cause,

respectively, slowly occurring, long-lasting warmth-seeking behav-

ior and rapidly occurring, marked cold-seeking behavior [5].

Although all autonomic responses were severely compromised in

the POA-lesioned rats (Fig. 1B), neither LPS-induced warmth-

seeking behavior nor LPS-induced cold-seeking behavior was

affected in these animals (Fig. 4). Furthermore, when allowed to

regulate their Tb behaviorally in the thermogradient apparatus,

the POA-lesioned rats responded to a low dose of LPS with

normal fever, and to a high dose of LPS with normal hypothermia

(Fig. 4). These findings are somewhat unexpected. They seem to

contradict the current view that neuronal groups within the

preoptic anterior hypothalamus are crucial for generating the

febrile response [15,34,35]. They are also contrary to the finding

that lesioning the POA attenuates LPS-induced warmth-seeking

behavior in toads [12]. However, squirrel monkeys [36] and

rabbits [25] have been shown to develop normal febrile responses

to LPS and prostaglandin E1 when the POA is ablated

electrolytically. The two latter studies and the present one indicate

that an intact POA is not required for LPS fever, thus suggesting

that POA neurons are not the only targets for febrigenic

mediators. That the febrile response can occur when the POA is

ablated bilaterally suggests that the current understanding of the

neural basis of fever has to be revised. The present study also

shows that LPS hypothermia can occur when the POA is

coagulated.

We also looked at thermoregulatory locomotion induced by

non-inflammatory stimuli: thermal and pharmacological. Thermal

stimuli included mild cold exposure and moderate heat exposure

(see Methods for details). Pharmacological stimulation was

achieved by systemic administration of agonists of the so-called

thermo-TRP (transient receptor potential) channels, a class of

heat-activated molecules recently implicated in thermosensation

[37–40]. At least some members of this class have been shown to

be involved in the selection of preferred Ta in both vertebrates

[5,41,42] and invertebrates [43]. In the present study, we used

menthol (50 mg/kg, i.v.), an agonist of the TRP melastatin-8

(TRPM8) channel (‘‘cold receptor’’), to induce warmth-seeking

behavior and resiniferatoxin (RTX, 0.5 mg/kg, i.v.), an agonist of

the TRP vanilloid-1 (TRPV1) channel (‘‘warmth receptor’’), to

induce cold-seeking behavior. All four stimuli (two thermal and

two pharmacological) were also used in our recent study, which

describes thermoregulatory behaviors of normal rats to these

Figure 2. Electrolytic ablation of the PVH: histological verification and effects on autonomic thermoregulation. (A) Serial coronal brain sections are
shown for a sham-lesioned rat and a PVH-lesioned rat. Arc, arcuate hypothalamic nucleus; ME, median eminence; mt, mammillothalamic tract; sox,
supraoptic decussation; VMH, ventromedial hypothalamic nucleus. Other abbreviations used are the same as in Figure 1. (B) The ability of sham-lesioned
and PVH-lesioned rats to defend their Tb by autonomic mechanisms during moderate heat exposure (28uC, 2 h) or mild cold exposure (17uC, 2 h).
doi:10.1371/journal.pone.0000001.g002
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stimuli [5]. In the present study, none of the four behavioral

responses studied was affected in the POA-lesioned rats (data not

shown). That the POA lacks an indispensable role in warmth- and

cold-seeking behaviors induced by thermal and pharmacological

stimuli is consistent with the literature. Indeed, the only

mammalian thermoregulatory behavior in which involvement of

the POA has been firmly established is a relaxed postural

extension in response to heat exposure; such postural extension

does not occur in POA-lesioned animals [44]. Other thermoreg-

ulatory behaviors, such as moving to a ‘‘reward’’ zone or pressing

a lever to trigger warming or cooling of the system, remain intact

in POA-lesioned animals [20,21,45,46]. That ablation of the POA

results in the loss of autonomic responses but does not affect

thermoregulatory locomotion suggests that POA thermosensors

are more important for autonomic thermoregulation than for cold-

and warmth-seeking behaviors. Because thermoregulatory loco-

motion is aimed at escaping the forthcoming thermal insult, it

occurs before the body core warms up or cools down; therefore, it

is triggered by peripheral temperatures. In contrast, autonomic

cold-defense responses (energetically expensive) and heat-defense

responses (water-consuming) are often recruited only when Tb

starts changing because behavioral mechanisms were ineffective or

could not have been used (e.g., due to competing behavioral

demands) [1].

Like the electrolytic lesions of the POA, lesions of the PVH

affected neither warmth-seeking behavior nor fever induced by

a low dose of LPS. Unlike the POA lesions, lesions of the PVH

strongly attenuated both cold-seeking behavior (P = 0.035) and

hypothermia (P = 0.047) caused by a high, shock-inducing dose of

LPS (Fig. 5). The observation that lesions of the PVH had no effect

on the LPS-induced warmth-seeking behavior and fever is

somewhat surprising, because electrolytic and excitotoxic lesions

of this structure have attenuated the febrile response to LPS in

several studies [26–28]. However, the animals used in these

previous studies were not allowed to select their preferred Ta.

Furthermore, the previous studies were most likely conducted

under subthermoneutral conditions (for detailed discussion of

thermoneutrality, see Ref. [47]). Under such conditions, fever is

caused primarily by activation of brown fat thermogenesis [48,49].

In contrast, PVH-lesioned rats were allowed to select their

preferred Ta and used behavioral thermoregulation (moved to

a warmer environment) while responding to LPS administration in

the present study. Not only does a supraneutral environment

warms the body of a rat exposed to it, but it also allows the animal

to mount the fever response by using skin vasoconstriction instead

of the energetically expensive thermogenesis [48,49]. Hence, the

PVH is likely involved in the circuitry of fever when the response is

mounted primarily by activation of brown fat thermogenesis.

When fever occurs due to warmth-seeking behavior, skin

vasoconstriction, or both, the PVH loses its important role in

the response. Such a scenario is consistent with the fact that the

PVH controls primarily thermogenesis and not skin vasomotion

Figure 3. Electrolytic ablation of the DMH: histological verification and effects on autonomic thermoregulation. (A) Serial coronal brain sections are
shown for a sham-lesioned rat and a DMH-lesioned rat. InfS, infundibular stem. Other abbreviations used are the same as in Figures 1 and 2. (B) The
ability of sham-lesioned and DMH-lesioned rats to defend their Tb by autonomic mechanisms during moderate heat exposure (28uC, 2 h) or mild cold
exposure (17uC, 2 h).
doi:10.1371/journal.pone.0000001.g003
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[50–52] or thermopreferendum (present study). The effect of PVH

ablation on LPS-induced cold-seeking behavior was highly

selective: the same electrolytic lesions that strongly attenuated this

behavior affected neither cold-seeking behavior caused by

moderate heat exposure or RTX nor warmth-seeking behavior

caused by mild cold exposure or menthol (data not shown).

The effects of lesioning the DMH were remarkably similar to

those of lesioning the PVH. Electrocoagulation of the DMH

blocked both cold-seeking behavior (P = 0.04) and hypothermia

(P = 0.032) caused by a high, shock-inducing dose of LPS, but it

affected neither warmth-seeking behavior nor fever caused by a low

dose of LPS (Fig. 6). Neither did electrocoagulation of DMH affect

cold-seeking behaviors caused by heat exposure and menthol nor

warmth-seeking behaviors caused by cold exposure and RTX

(data not shown). The found attenuation of LPS-induced

hypothermia in PVH- and DMH-lesioned rats is a first report of

a brain structure being crucial for the development of hypothermia

in systemic inflammation. These findings provide an additional,

perhaps decisive, argument in a dispute as to whether LPS-

induced hypothermia is a passive consequence of peripheral

vasodilation and uncontrolled heat loss or, alternatively, whether it

is a brain-mediated response. To determine whether the effects of

electrolytic lesioning of the PVH and DMH on cold-seeking

behavior and hypothermia in LPS shock were from the destruction

of neuronal bodies in these areas or, alternatively, from the

interruption of fibers of passage, we performed chemical lesions

with ibotenic acid, an excitotoxin known to destroy neuronal

bodies but to spare passing axons [53].

Excitotoxic lesions of PVH and DMH: effects on

thermoregulation
Similarly to how electrocoagulation of the PVH (Fig. 2A) did not

affect autonomic thermoregulation (Fig. 2B), bilateral lesioning of

this structure by ibotenic acid (Fig. 7A) had no effect on autonomic

heat-defense or cold-defense mechanisms (Fig. 7B). Similarly to

how electrolytic lesions of the DMH (Fig. 3A) did not affect

autonomic heat-defense mechanisms but impaired autonomic

cold-defense mechanisms (Fig. 3B), bilateral ibotenic acid lesioning

of the DMH (Fig. 8A) had no effect on the autonomic defense of

Tb during heat exposure but made the rats incapable of defending

their Tb autonomically against mild cold exposure (P,0.001;

Fig. 8B). The effects of excitotoxic lesions of these two structures

on responses to the high dose of LPS were different (Fig. 9).

Lesioning the PVH affected neither LPS-induced cold-seeking

behavior nor LPS-induced hypothermia. In contrast, lesioning the

DMH by ibotenic acid prevented LPS-induced cold-seeking

behavior (P = 0.014) and attenuated LPS hypothermia

(P = 0.028). These results indicate that the DMH contains the

bodies of neurons involved in the mechanisms of cold-seeking

behavior and hypothermia caused by a high dose of LPS, and that

the PVH contains neuronal fibers (but not cell bodies) involved in

these two responses.

How the DMH neurons and PVH fibers fit into the circuitry of

LPS-induced cold-seeking behavior is a subject for speculation.

The DMH projects to the periaqueductal gray matter (PAG)

[54,55]. The PAG is a center for efferent integration of autonomic

and behavioral responses, and different cellular groups within the

PAG are involved in motor behaviors caused by various stimuli

[56,57]. It is, therefore, tempting to hypothesize that DMH lesions

block LPS-induced cold-seeking behavior by interrupting the

DMH projection to the PAG. However, this projection does not

go through the PVH. Hence, the DMH-PAG hypothesis cannot

explain the effect of PVH lesions. Furthermore, cold-seeking

responses triggered by different stimuli represent the same

behavioral act (moving to a lower Ta) and are, therefore, likely

to share the same efferent (motor) pathway. Yet, our data show

Figure 4. The effects of LPS (doses indicated) on the selected Ta (top panels) and Tb (bottom panels) of sham-lesioned and POA-lesioned rats.
doi:10.1371/journal.pone.0000001.g004
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that the involvement of DMH neurons and of PVH fibers of

passage in cold-seeking behavior is specific to stimulation with

a high dose of LPS. Indeed, the integrity of neither structure is

needed to mount cold- or warmth-seeking behavior induced by

any of the other five stimuli tested in the present study. Therefore,

involvement of the DMH-PAG projection seems improbable.

Figure 5. The effects of LPS (doses indicated) on the selected Ta (top panels) and Tb (bottom panels) of sham-lesioned and PVH-lesioned rats.
doi:10.1371/journal.pone.0000001.g005

Figure 6. The effects of LPS (doses indicated) on the selected Ta (top panels) and Tb (bottom panels) of sham-lesioned and DMH-lesioned rats.
doi:10.1371/journal.pone.0000001.g006
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Because rats with DMH or PVH lesions respond normally to

thermal stimulation (cold or warmth) and to pharmacological

stimulation of either a cold (TRPM8) or a warmth (TRPV1)

receptor, both DMH and PVH are likely uninvolved in the

thermoafferent pathway. This pathway (also known as the

interoceptive afferent system) includes, most notably, the para-

brachial nucleus and insular cortex [58,59]. Although a direct

projection of the DMH to the parabrachial nucleus was searched

for, it was found upon close examination either nonexistent or

weak [60–62]. Likewise, earlier reports of a direct projection of the

DMH to the insular cortex [55] were not confirmed in subsequent

studies using retrograde labeling [61,63].

Whereas DMH-lesioned and PVH-lesioned animals seem fully

capable of both sensing thermal information and responding to it

with an appropriate locomotor act, they fail to exhibit cold-seeking

behavior when treated with a high dose of LPS. It is, therefore,

likely that the DMH and PVH are involved in a stimulus-specific,

affective or motivational (but not sensory or motor), component of

LPS-induced cold-seeking behavior. In support, the DMH sends

marked projections to the septum and amygdala [55,61,64], and

these telencephalic structures are well documented to mediate the

affective or motivational component of various behaviors [65–67].

Furthermore, the septum drives warmth-induced locomotion in

rats, as found by Roberts and Mooney [68] in their elegant

experiments involving localized diathermic warming of five

distinct brain areas. Importantly, the proposed involvement of

the DMH projections to the septum and amygdala explains not

only the effect of DMH ablation on LPS-induced cold-seeking

behavior, but also the effect of PVH ablation. One of the major

routes for ascending projections from the DMH is through the

hypothalamic periventricular zone [61,69], and this route is likely

to be interrupted by electrocoagulation (but not lesioning with

ibotenic acid) of the PVH. Hence, we propose that DMH neurons

sending their axons to the telencephalon (perhaps the septum and

amygdala) through the PVH participate in the affective or

motivational (but not in the sensory or motor) component of

LPS-induced cold-seeking behavior.

In conclusion, his study identifies two neural elements essential

for the cold-seeking response of rats to bacterial LPS: neuronal

bodies located in the DMH and axons passing through the PVH.

These are the first two landmarks on the map of the circuitry of

cold-seeking behavior associated with endotoxin shock.

METHODS

Animals
Experiments were performed in adult male Wistar rats (Harlan,

Indianapolis, IN, USA). At the time of the electrolytic or

Figure 7. Excitotoxic ablation of the PVH: histological verification and effects on autonomic thermoregulation. (A) Bright-field photomicrographs of
serial coronal brain sections (50 mm, Klüver-Barrera staining) of a sham-lesioned rat and a representative rat with bilateral ibotenic acid lesions of the
PVH. The magnification of photomicrographs and the scale vary in different panels. Panels I-VI:640 (magnification) and 500 mm (scale bar). Panels VII
and VIII: 6100 (magnification) and 200 mm (scale bar). Panels IX and X: 6400 (magnification) and 50 mm (scale bar). (B) The ability of sham-lesioned
rats and rats with bilateral ibotenic acid lesions of the PVH to defend their Tb by autonomic mechanisms during moderate heat exposure or mild cold
exposure.
doi:10.1371/journal.pone.0000001.g007
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excitotoxic lesioning, the rats had a body mass of 370–400 g. The

rats were housed in individual cages in a rack equipped with

a Smart Bio-Pack ventilation system and Thermo-Pak temperature

control system (Allentown Caging Equipment, Allentown, NJ,

USA); the incoming air temperature was maintained at 28uC. The

room was on a 12:12 h light-dark cycle (lights on at 7:00 A.M.).

The animals had free access to tap water and standard rat chow

(Harlan Teklad, Madison, WI, USA). Before the experiments, the

rats were habituated extensively (4 daily training sessions, 6–16 h

each) to stay in a thermogradient apparatus (described below). On

the day before the experiment, the rats were placed in the

apparatus at 6:00 PM and further acclimated to the experimental

conditions by staying in the apparatus overnight. All injections and

other experimental interventions were made the next day, between

8:00 AM and 3:00 PM. The experimental protocols were

approved by the St. Joseph’s Hospital Animal Care and Use

Committee.

Electrolytic lesions
All surgical and lesioning procedures were performed under

ketamine-xylazine-acepromazine (55.6, 5.5, and 1.1 mg/kg, re-

spectively, intraperitoneally) anesthesia and antibiotic (enroflox-

acin, 1.2 mg/kg, subcutaneously) protection. All brain lesions were

placed on Day 0. For electrolytic lesioning, a rat was anesthetized,

and the skin of the head over the frontal and parietal bones was

shaved and scrubbed. The rat was fixed to a stereotaxic apparatus

(David Kopf, Tujunga, CA, USA) with the incisor bar set 3.3 mm

ventral to interaural line. The skin was incised over the sagittal

suture, the skin and the underlying muscles were retracted, and the

periosteum was detached from the bone and excised. A stainless

steel electrode (250 mm diameter, Frederic Haer, Bowdoinham,

ME, USA) was inserted into the brain. All stereotaxic coordinates

were taken from Paxinos and Watson [70], but the anteroventral

coordinate was increased by 0.5 mm to adjust for the difference in

the body mass between the rats used by Paxinos and Watson [70]

and those used in the present study. The following stereotaxic

coordinates were used: 0.0 mm (at bregma), 0.5 mm from the

midline, and 8.5 mm from the skull surface for the POA;

21.5 mm from bregma, 0.5 mm from the midline, and 8.7 mm

from the skull surface for the PVH; and 22.8 mm from bregma,

0.5 mm from the midline, and 9.0 mm from the skull surface for

the DMH. A second electrode (an ‘‘alligator’’ clip) was attached to

the edge of the surgical wound on the head. To lesion the brain

tissue, a precision lesioning instrument (Ugo Basile, Comerio,

Italy) was used. A constant anodal current (1 mA) was passed

through the electrodes for 10 s (PVH) or 30 s (POA or DMH).

After the structure of interest was lesioned on one side, the

electrode was removed and inserted at the same coordinates

contralaterally. Sham-lesioned rats were prepared similarly, but

the tip of the electrode was placed 2 mm above the POA, PVH, or

DMH, and no current was passed.

Figure 8. Excitotoxic ablation of the DMH: histological verification and effects on autonomic thermoregulation. (A) Bright-field photomicrographs of
serial coronal brain sections (50 mm, Klüver-Barrera staining) of a sham-lesioned rat and a representative rat with bilateral ibotenic acid lesions of the
DMH. The magnification and scale of each panel are the same as those of the corresponding panel in Figure 7. (B) The ability of sham-lesioned rats and
rats with bilateral ibotenic acid lesions of the DMH to defend their Tb by autonomic mechanisms during moderate heat exposure or mild cold exposure.
doi:10.1371/journal.pone.0000001.g008
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Chemical lesions
Unless specified otherwise, all drugs and reagents were purchased

from Sigma-Aldrich (St Louis, MO, USA). To prevent the

hypertensive and other cardiovascular side effects of intrabrain

administration of ibotenic acid, the rats were pretreated with the

ganglionic blocker hexamethonium (30 mg/kg, intraperitoneally).

For lesioning the PVH or DMH, a glass micropipette (tip

diameter, 50 mm) was inserted into the target area by using the

same coordinates as for electrocoagulation. A solution of ibotenic

acid (10 mg/ml) in phosphate-buffered (0.01 M, pH 7.4) saline was

infused with the help of an infusion pump (30 nl/min) over

3.3 min (to deliver the total volume of 100 nl; PVH) or 10 min

(300 nl; DMH), and the pipette was left in place for 5 min. Sham-

lesioned animals were infused with vehicle. All infusions were

performed bilaterally.

All rats with electrolytic or excitotoxic brain lesions were

examined daily for signs of dehydration and general malaise. If

a rat had lost more than 15% of its body mass 24 h after lesioning

or was failing to recover from its initial loss of body mass, it was

injected with isotonic saline (10 ml, subcutaneously) to counteract

dehydration.

Jugular catheterization and temperature datalogger

implantation
On Day 10, each animal was anesthetized a second time. After

a midline laparotomy was performed, a miniature temperature

datalogger (SubCue, Calgary, Alberta, Canada) was inserted in the

peritoneal cavity and sutured to the lateral abdominal wall. The

datalogger had been programmed to acquire data (measure Tb)

every 5 min. The surgical wound was sutured in layers. The rat

was then implanted with a jugular vein catheter. A 1-cm

longitudinal incision was made on the ventral surface of the neck,

1 cm left of the trachea. The left jugular vein was exposed, freed

from its surrounding connective tissue, and ligated. A silicone

catheter (ID 0.5 mm, OD 0.9 mm) filled with heparinized (10 U/

ml) pyrogen-free saline was passed into the superior vena cava

through the jugular vein and secured in place with ligatures. The

free end of the catheter was knotted, tunneled under the skin to the

nape, and exteriorized. The surgical wound on the ventral surface

of the neck was sutured. The jugular catheter was flushed with

heparinized saline (10 U/ml) the day after surgery and every other

day thereafter. The experiments were performed on Days 13–19.

Thermogradient apparatus
The six-channel thermogradient apparatus used is described in

detail elsewhere [5]. In brief, the apparatus was built from 12-mm-

thick aluminum sheets welded together to form six parallel

channels running between two tanks. Each channel (200 long x 12

wide x 20 cm high) had an adjustable stainless steel grid (that

served as a floor for the animals tested) and was covered with an

acrylic double-panel lid. The tank at one end of the apparatus was

filled with water and equipped with two heating units (Poly-

Science, Niles, IL, USA); the tank at the other end was constantly

perfused with 10% ethylene glycol by an external-circulation

cooling/heating pump (PolyScience). This setting allowed an

almost linear longitudinal Ta gradient common for all channels to

be established. In the present study, Ta ranged from 15uC at the

cold end to 30uC at the warm end; Ta changed with a change in

the longitudinal position in the channel at a rate of 0.15uC/cm.

Within each channel, Ta was monitored by five evenly spaced

(50 cm apart) thermocouples located under the grid floor, and the

position of the rat was monitored by 56 evenly spaced (3.5 cm)

Figure 9. The effects of LPS (5,000 mg/kg, i.v.) on the selected Ta and Tb of sham-lesioned rats and rats with bilateral ibotenic acid lesions of either
PVH or DMH.
doi:10.1371/journal.pone.0000001.g009
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infrared emitter-receiver pairs, which formed transversal infrared

beams.

Studying behavioral thermoregulation
As reported elsewhere [5], thermoregulatory behavior was

induced by inflammatory, thermal, or pharmacological stimuli.

Inflammatory stimulation was achieved by injecting LPS (Escher-

ichia coli, serotype 0111:B4) through the jugular catheter at a low

dose (10 mg/kg; to cause warmth-seeking behavior) or a high dose

(5,000 mg/kg; to cause cold-seeking behavior). Thermal stimula-

tion was achieved by confining each rat to a short (22 cm) portion

of the channel near either the warm end (Ta of ,28uC in the

middle of the confinement zone) or the cold end (Ta of ,17uC in

the middle of the confinement zone) of the thermogradient

apparatus for 1 or 2 h. Both the preferred Ta and the midpoint of

the thermoneutral zone for rats in this apparatus are ,24uC [5].

Therefore, confining a rat at 28 or 17uC results in mild heat

exposure or moderate cold exposure, respectively. Pharmacolog-

ical induction of cold-seeking behavior was attempted by injecting

the rats with RTX (0.5 mg/kg, i.v.), a TRPV1 agonist.

Pharmacological induction of warmth-seeking behavior was

attempted by injecting the rats with menthol (50 mg/kg, i.v.),

a TRPM8 agonist. Both RTX and menthol were dissolved in

saline containing 10% ethanol and 10% propylene glycol.

Testing autonomic defense of body temperature
The ability of rats to defend their Tb (recorded by the dataloggers

implanted in the peritoneal cavity) during heat or cold exposure

was tested. These tests were performed the same way as thermal

stimulation for behavioral experiments (see above). In brief, each

rat was confined to a short portion of the channel near the warm

(,28uC) or cold end (,17uC) of the thermogradient apparatus.

The rats could not move to a different Ta; therefore, they were

forced to regulate their Tb mostly by autonomic mechanisms.

Histological verification
To verify the correct placement of the lesions, the rats were

anesthetized and perfused through the ascending aorta (right

atrium cut) with saline (50 ml, 5 min) followed by 10% formalin

(50 ml, 5 min). The brains were removed, placed in phosphate-

buffered (0.1 M, pH 7.4) saline containing 30% sucrose and 10%

formalin, and post-fixed in this solution at 4uC for 48 h. The

brains were then frozen in dry ice and sectioned (50 mm). Sections

containing the structures of interest were collected, mounted on

glass slides, stained either with cresyl-violet (stains the Nissl bodies

in the cytoplasm of neurons purple-blue) or Klüver-Barrera stain

(stains the myelinated fibers blue and the cell bodies violet), and

examined under a light microscope.

Data processing and analysis
The preferred Ta was calculated based on a linear relationship

between the position in the channel and Ta. A weighted average

was calculated for every 5-min interval. The obtained curves of

preferred Ta were smoothed by a second polynomial degree

Savitzky-Golay filtering over a 30-min shifting window using

Microcal Origin 5.0 software (OriginLab, Northampton, MA,

USA). The Tb and preferred Ta responses were compared across

treatments and time points by a two-way analysis of variance for

repeated measurements followed by the Tukey test (Sigma Stat,

Systat Software, Point Richmond, CA, USA). The differences

were considered significant at P,0.05. The data are reported as

mean6standard error.
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